metal-organic papers

Received 12 April 2005

Accepted 14 April 2005

Online 23 April 2005

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Jian-Rong Su,<sup>a</sup>\* Li Zhang<sup>b</sup> and Duan-Jun Xu<sup>a</sup>

<sup>a</sup>Department of Chemistry, Zheijang University, People's Republic of China, and <sup>b</sup>Food Department, Zhejiang Gongshang University, People's Republic of China

Correspondence e-mail: chem@zju.edu.cn

#### **Key indicators**

Single-crystal X-ray study T = 295 K Mean  $\sigma(C-C) = 0.004$  Å R factor = 0.046 wR factor = 0.088 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Aqua(4-hydroxybenzoato- $\kappa O$ )bis(1,10phenanthroline- $\kappa^2 N, N'$ )manganese(II) 4-hydroxybenzoate monohydrate

The compound.  $[Mn(C_7H_5O_3)(C_{12}H_8N_2)_2(H_2O)]$ title (C<sub>7</sub>H<sub>5</sub>O<sub>3</sub>)·H<sub>2</sub>O, consists of Mn<sup>II</sup> complex cations, 4-hydroxybenzoate anions and uncoordinated water molecules. The Mn<sup>II</sup> complex cation assumes a distorted octahedral coordination geometry formed by two 1,10-phenanthroline (phen) ligands, one 4-hydroxybenzoate anion and a water molecule. The face-to-face distances of 3.39 (2) and 3.364 (12) Å between partially overlapped parallel phen ligands suggest the existence of  $\pi$ - $\pi$  stacking between neighboring complex cations.

#### Comment

The  $\pi$ - $\pi$  stacking interaction has attracted much scientific attention because it is correlated with electron transfer in some biological systems (Deisenhofer & Michel, 1989). In order to study further the nature of  $\pi$ - $\pi$  stacking, a series of metal complexes incorporating aromatic ligands have been synthesized, and their crystal structures have been determined in our laboratory (Su et al., 2005; Li et al., 2005). As part of this ongoing work, the title compound, (I) (Fig. 1), has been prepared and structurally characterized.



The crystal structure of (I) contains Mn<sup>II</sup> complex cations, 4-hydroxybenzoate anions and uncoordinated water molecules. The Mn<sup>II</sup> ion displays a distorted octahedral MnN<sub>4</sub>O<sub>2</sub> coordination geometry (Table 1), involving two bidentate phen ligands, one monodentate 4-hydroxybenzoate anion and a coordinated water molecule. The uncoordinated carboxy atom O32 is intramolecularly hydrogen bonded to the coordinated water molecule (Fig. 1 and Table 2). The coordinated carboxyl O31 and water O1 atoms are in cis positions, while the two phen ligands are nearly perpendicular to each other, with a dihedral angle of  $75.59 (3)^{\circ}$ .

© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved





The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for the H atoms) and with dashed lines showing the hydrogen bonding.

The  $\pi$ - $\pi$  stacking interactions occur between parallel 1,10phenanthroline (phen) ligands of neighboring Mn<sup>II</sup> complex cations. The parallel N1-phen and N1<sup>iv</sup>-phen [symmetry code: (iv) 1 - x, 1 - y, -z] species overlap one another, as shown in Fig. 2. The face-to-face distance between py rings is 3.39 (2) Å. Another parallel N4-phen–N4<sup>v</sup>-phen [symmetry code: (v) 1 - x, 1 - y, 1 - z] overlap is shown in Fig. 3; the face-to-face distance between these ligands is 3.364 (12) Å.

The uncoordinated (O1W) water molecules link neighboring  $Mn^{II}$  complex cations and uncoordinated 4-hydroxybenzoate anions *via* O1-H1···O1W, O1W-H1A···O42 (Fig. 1) and O1W-H1B···O33<sup>i</sup> (see Table 2 for symmetry code) hydrogen bonds, to form an extended structure. Intermolecular hydrogen bonding also occurs between uncoordinated 4-hydroxybenzoate anions and between  $Mn^{II}$  complex cations and uncoordinated 4-hydroxybenzoate anions (Table 2).

# **Experimental**

All reagents were commercially available and of analytical grade. Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O (0.25 g, 1 mmol), 4-hydroxybenzoic acid (0.14 g, 1 mmol), phen (0.20 g, 1 mmol) and Na<sub>2</sub>CO<sub>3</sub> (0.05 g, 1 mmol) were dissolved in a water/ethanol solution (20 ml, 1:1). The solution was refluxed for 3 h, then cooled to room temperature and filtered. Yellow single crystals of (I) were obtained from the filtrate after 4 d.

#### Crystal data

$$\begin{split} & [\mathrm{Mn}(\mathrm{C}_{7}\mathrm{H}_{5}\mathrm{O}_{3})(\mathrm{C}_{12}\mathrm{H}_{8}\mathrm{N}_{2})_{2}(\mathrm{H}_{2}\mathrm{O})] - \\ & (\mathrm{C}_{7}\mathrm{H}_{5}\mathrm{O}_{3})\cdot\mathrm{H}_{2}\mathrm{O} \\ & M_{r} = 725.60 \\ & \mathrm{Monoclinic}, \ P_{2} \ /n \\ & a = 8.4429 \ (2) \ \mathrm{\mathring{A}} \\ & b = 24.1805 \ (6) \ \mathrm{\mathring{A}} \\ & c = 17.0825 \ (4) \ \mathrm{\mathring{A}} \\ & \beta = 103.495 \ (7)^{\circ} \\ & V = 3391.17 \ (17) \ \mathrm{\mathring{A}}^{3} \\ & Z = 4 \end{split}$$

 $D_x = 1.421 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 10 848 reflections  $\theta = 2.6-24.6^{\circ}$  $\mu = 0.45 \text{ mm}^{-1}$ T = 295 (3) K Platelet, yellow  $0.20 \times 0.20 \times 0.05 \text{ mm}$ 



#### Figure 2

 $\pi$ - $\pi$  stacking between parallel N1-phen and N1<sup>iv</sup>-phen groups of neighboring Mn<sup>II</sup> complex cations. [Symmetry code: (iv) 1 - x, 1 - y, -z.]



#### Figure 3

 $\pi$ - $\pi$  stacking between parallel N4-phen and N4<sup>v</sup>-phen groups of neighboring Mn<sup>II</sup> complex cations. [Symmetry code: (v) 1 - x, 1 - y, 1 - z.]

## Data collection

460 parameters

H-atom parameters constrained

| Rigaku R-AXIS RAPID                    | 5716 independent reflections                              |
|----------------------------------------|-----------------------------------------------------------|
| diffractometer                         | 3936 reflections with $I > 2\sigma(I)$                    |
| v scans                                | $R_{\rm int} = 0.057$                                     |
| Absorption correction: multi-scan      | $\theta_{\rm max} = 25.0^{\circ}$                         |
| (ABSCOR; Higashi, 1995)                | $h = -9 \rightarrow 10$                                   |
| $T_{\min} = 0.916, \ T_{\max} = 0.979$ | $k = -27 \rightarrow 28$                                  |
| 22 265 measured reflections            | $l = -20 \rightarrow 20$                                  |
| Refinement                             |                                                           |
| Refinement on $F^2$                    | $w = 1/[\sigma^2(F_o^2) + (0.0343P)^2]$                   |
| $R[F^2 > 2\sigma(F^2)] = 0.046$        | + 2.0463P]                                                |
| $vR(F^2) = 0.088$                      | where $P = (F_0^2 + 2F_c^2)/3$                            |
| S = 1.03                               | $(\Delta/\sigma)_{\rm max} = 0.001$                       |
| 5716 reflections                       | $\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$ |

 $\Delta \rho_{\rm max} = -0.17 \text{ c A}$  $\Delta \rho_{\rm min} = -0.28 \text{ e Å}^-$ 

| Table 1                       |     |     |
|-------------------------------|-----|-----|
| Selected geometric parameters | (Å, | °). |

| Mn-O1                  | 2.1471 (19)             | Mn-N4     | 2.276 (2)  |
|------------------------|-------------------------|-----------|------------|
| Mn-O31                 | 2.1054 (17)             | C31-O31   | 1.276 (3)  |
| Mn-N1                  | 2.284 (2)               | C31-O32   | 1.249 (3)  |
| Mn-N2                  | 2.265 (2)               | C41-O41   | 1.243 (4)  |
| Mn-N3                  | 2.263 (2)               | C41-O42   | 1.260 (4)  |
| O1-Mn-O31              | 87.31 (7)               | O31-Mn-N4 | 103.87 (7) |
| O1-Mn-N1               | 103.17 (8)              | N1-Mn-N2  | 73.54 (8)  |
| O1-Mn-N2               | 91.81 (8)               | N1-Mn-N3  | 94.34 (8)  |
| O1-Mn-N3               | 162.37 (8)              | N1-Mn-N4  | 161.26 (8) |
| O1-Mn-N4               | 90.58 (8)               | N2-Mn-N3  | 95.22 (7)  |
| O31-Mn-N1              | 89.62 (8)               | N2-Mn-N4  | 93.62 (8)  |
| O31-Mn-N2<br>O31-Mn-N3 | 162.49 (8)<br>90.73 (7) | N3-Mn-N4  | 72.87 (8)  |
|                        |                         |           |            |

Table 2Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$      | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------------|------|--------------|--------------|---------------------------|
| $O1-H1\cdots O1W$                | 0.92 | 1.75         | 2.661 (3)    | 171                       |
| $O1W-H1A\cdots O42$              | 0.93 | 1.88         | 2.808 (3)    | 174                       |
| $O1W-H1B\cdots O33^{i}$          | 0.98 | 2.09         | 3.069 (3)    | 174                       |
| O33−H33···O41 <sup>ii</sup>      | 0.91 | 1.68         | 2.565 (3)    | 163                       |
| $O43\!-\!H43\!\cdots\!O42^{iii}$ | 0.96 | 1.83         | 2.636 (3)    | 139                       |

Symmetry codes: (i)  $-x + \frac{1}{2}$ ,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii) -x, -y + 1, -z; (iii) x + 1, y, z.

H atoms on the aromatic rings were placed in calculated positions, with C-H = 0.93 Å, and refined as riding, with  $U_{iso}(H)$  =  $1.2U_{eq}$ (carrier). H atoms of the water and hydroxy groups were located in a difference Fourier map and refined as riding in their asfound relative positions (O-H = 0.92–0.98 Å), with a fixed isotropic displacement parameter of 0.08 Å.

Data collection: *PROCESS-AUTO* (Rigaku Corporation, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC & Rigaku Corporation, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (grant No. 20443003).

### References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2154.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
- Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC & Rigaku Corporation. (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Akishima, Tokyo, Japan.
- Sheldrick, G. M. (1997). *SHELXL97*. University of Göttingen, Germany. Su, J.-R. & Xu, D.-J. (2005). *Acta Cryst.* E61, m244–246.